skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kurashige, Cole"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present Generic Refinement Types: a way to write modular higher-order specifications that abstract invariants over function contracts, while preserving automatic SMT-decidable verification. We show how generic refinements let us write a variety of modular higher-order specifications, including specifications for Rust's traits which abstract over the concrete refinements that hold for different trait implementations. We formalize generic refinements in a core calculus and show how to synthesize the generic instantiations algorithmically at usage sites via a combination of syntactic unification and constraint solving. We give semantics to generic refinements via the intuition that they correspond to ghost parameters, and we formalize this intuition via a type-preserving translation into the polymorphic contract calculus to establish the soundness of generic refinements. Finally, we evaluate generic refinements by implementing them in Flux and using it for two case studies. First, we show how generic refinements let us write modular specifications for Rust's vector indexing API that lets us statically verify the bounds safety of a variety of vector-manipulating benchmarks from the literature. Second, we use generic refinements to refine Rust's Diesel ORM library to track the semantics of the database queries issued by client applications, and hence, statically enforce data-dependent access-control policies in several database-backed web applications. 
    more » « less
  2. The problem of automatically proving the equality of terms over recursive functions and inductive data types is challenging, as such proofs often require auxiliary lemmas which must themselves be proven. Previous attempts at lemma discovery compromise on either efficiency or efficacy.Goal-directedapproaches are fast but limited in expressiveness, as they can only discover auxiliary lemmas which entail their goals.Theory explorationapproaches are expressive but inefficient, as they exhaustively enumerate candidate lemmas. We introducee-graph guided lemma discovery, a new approach to finding equational proofs that makes theory exploration goal-directed. We accomplish this by using e-graphs and equality saturation to efficiently construct and compactly represent the space ofallgoal-oriented proofs. This allows us to explore only those auxiliary lemmasguaranteedto help make progress on some of these proofs. We implemented our method in a new prover called CCLemma and compared it with three state-of-the-art provers across a variety of benchmarks. CCLemma performs consistently well on two standard benchmarks and additionally solves 50% more problems than the next best tool on a new challenging set. 
    more » « less